
DocBook Demystification HOWTO
Eric Raymond

Abstract

This HOWTO attempts to clear the fog and mystery surrounding the DocBook markup system and the tools that go with it. It is aimed at authors of technical
documentation for open-source projects hosted on Linux, but should be useful for people composing other kinds on other Unixes as well.

I. I NTRODUCTION

A great many major open-source projects are converging on DocBook as a standard format for their documentation — projects
including the Linux kernel, GNOME, KDE, Samba, and the Linux Documentation Project. The advocates of XML-based ”struc-
tural markup” (as opposed to the older style of ”presentation markup” exemplified by troff, Tex, and Texinfo) seem to have won
the theoretical battle.

Nevertheless, a lot of confusion surrounds DocBook and the programs that support it. Its devotees speak an argot that is dense
and forbidding even by computer-science standards, slinging around acronyms that have no obvious relationship to the things you
need to do to write markup and make HTML or Postscript from it. XML standards and technical papers are notoriously obscure.
Most DocBook-related tools are very poorly documented, and their documentation is especially prone to assume way too much
prior knowledge on the reader’s part.

This HOWTO will attempt to clear up the major mysteries surrounding DocBook and its application to open-source documen-
tation — both the technical and political ones. Our objective is to equip you to understand not just what you need to do to make
documents, but why the process is as complex as it is — and how it can be expected to change as newer DocBook-related tools
become available.

II. W HY CARE ABOUT DOCBOOK AT ALL ?

There are two possibilities that make DocBook really interesting. One ismulti-mode renderingand the other issearchable
documentation databases.

Multi-mode rendering is the easier, nearer-term possibility; it’s the ability to write a document in a single master format that can
be rendered in many different display modes (in particular, as both HTML for on-line viewing and as Postscript for high-quality
printed output). This capability is pretty well implemented now.

Searchable documentation databasesis shorthand for the possibility that DocBook might help get us to a world in which all the
documentation on your open-source operating system is one rich, searchable, cross-indexed and hyperlinked database (rather than
being scattered across several different formats in multiple locations as it is now).

Ideally, whenever you install a software package on your machine it would register its DocBook documentation into your
system’s catalog. HTML, properly indexed and cross-linked to the HTML in the rest of your catalog, would be generated. The
new package’s documentation would then be available through your browser. All your documentation would would be searchable
through an interface resembling a good Web search engine.

HTML itself is not quite rich enough a format to get us to that world. To name just one lack, you can’t explicitly declare index
entries in HTML. DocBookdoeshave the semantic richness to support structured documentation databases. Fundamentally that’s
why so many projects are adopting it.

DocBook has the vices that go with its virtues. Some people find it unpleasantly heavyweight, and too verbose to be really
comfortable as a composition format. That’s OK; as long as the markup tools they like (things like Perl POD or GNU Texinfo)
can generate DocBook out their back ends, we can all still get we want. It doesn’t matter whether or not everybody writes in
DocBook — as long as it becomes the common document interchange format that everyone uses, we’ll still get unified searchable
documentation databases.

III. STRUCTURAL MARKUP: A PRIMER

Older formatting languages like Tex, Texinfo, and Troff supportedpresentation markup. In these systems, the instructions you
gave were about the appearance and physical layout of the text (font changes, indentation changes, that sort of thing).

Presentation markup was adequate as long as your objective was to print to a single medium or type of display device. You run
into its limits, however, when you want to mark up a document so that (a) it can be formatted for very different display media (such
as printing vs. Web display), or (b) you want to support searching and indexing the document by its logical structure (as you are
likely to want to do, for example, if you are incorporating it into a hypertext system).

To support these capabilities properly, you need a system ofstructural markup. In structural markup, you describe not the
physical appearance of the document but the logical properties of its parts.

As an example: In a presentation-markup language, if you want to emphasize a word, you might instruct the formatter to set it
in boldface. In troff(1) this would look like so:



2

All your base
.B are
belong to us!

In a structural-markup language, you would tell the formatter to emphasize the word:

All your base <emphasis>are</emphasis> belong to us!

The ”<emphasis>” and </emphasis>in the line above are calledmarkup tags, or just tagsfor short. They are the instructions
to your formatter.

In a structural-markup language, the physical appearance of the final document would be controlled by astylesheet. It is the
stylesheet that would tell the formatter ”render emphasis as a font change to boldface”. One advantage of presentation-markup
languages is that by changing a stylesheet you can globally change the presentation of the document (to use different fonts, for
example) without having to hack all the the individual instances of (say) .B in the document itself.

IV. D OCUMENT TYPE DEFINITIONS

(Note: to keep the explanation simple, most of this section is going to tell some lies, mainly by omitting a lot of history.
Truthfulness will be fully restored in a following section.)

DocBook is a structural-level markup language. Specifically, it is a dialect of XML. A DocBook document is a hunk of XML
that uses XML tags for structural markup.

In order for a document formatter to apply a stylesheet to your document and make it look good, it needs to know things about
the overall structure of your document. For example, it needs to know that a book manuscript normally consists of front matter, a
sequence of chapters, and back matter in order to physically format chapter headers properly. In order for it to know this sort of
thing, you need to give it aDocument Type Definitionor DTD. The DTD tells your formatter what sorts of elements can be in the
document structure, and in what orders they can appear.

What we mean by calling DocBook an ‘application’ of XML is actually that DocBook is a DTD — a rather large DTD, with
somewhere around 400 tags in it.

Lurking behind DocBook is a kind of program called avalidating parser.When you format a DocBook document, the first step
is to pass it through a validating parser (the front end of the DocBook formatter). This program checks your document against the
DocBook DTD to make sure you aren’t breaking any of the DTD’s structural rules (otherwise the back end of the formatter, the
part that applies your style sheet, might become quite confused)

The validating parser will either bomb out, giving you error messages about places where the document structure is broken,
or translate the document into a stream offormatting eventswhich the parser back end combines with the information in your
stylesheet to produce formatted output

Here is a diagram of the whole process:

The part of the diagram inside the dotted box is your formatting software, ortoolchain. Besides the obvious and visible input to
the formatter (the document source) you’ll need to keep the two ‘hidden’ inputs of the formatter (DTD and stylesheet) in mind to
understand what follows.

V. OTHER DTDS

A brief digression into other DTDs may help make clear what parts of the previous section were specific to DocBook and what
parts are general to all structural-markup languages.

TEI (Text Encoding Initiative) is a large, elaborate DTD used primarily in academia for computer transcription of literary texts.
TEI’s Unix-based toolchains use many of the same tools that are involved with DocBook, but with different stylesheets and (of
course) a different DTD.

http://www.tei-c.org/


3

XHTML, the latest version of HTML, is also an XML application described by a DTD, which explains the family resemblance
between XHTML and DocBook tags. The XHTML toolchain consists of web browsers and a number of ad-hoc HTML-to-print
utilities.

Many other XML DTDs are maintained to help people exchange structured information in fields as diverse as bioinformatics
and banking. You can look at alist of repositoriesto get some idea of the variety out there.

VI. T HE DOCBOOK TOOLCHAIN

Normally, what you’ll do to make XHTML from your DocBook sources will look like this:

bash$ xmlto xhtml foo.xml
Convert to XHTML
bash$ ls *.html
ar01s02.html ar01s03.html ar01s04.html index.html

In this example, you converted an XML-Docbook document namedfoo.xml with three top-level sections into an index page
and two parts. Making one big page is just as easy:

bash$ xmlto xhtml-nochunks foo.xml
Convert to XHTML
bash$ ls *.html
foo.html

Finally, here is how you make Postscript for printing:

bash$ xmlto ps foo.xml # To make Postscript
Convert to XSL-FO
Making portrait pages on A4 paper (210mmx297mm)
Post-process XSL-FO to DVI
Post-process DVI to PS
bash$ ls *.ps
foo.ps

To turn your documents into HTML or Postscript, you need an engine that can apply the combination of DocBook DTD and a
suitable stylesheet to your document. Here is how the open-source tools for doing this fit together:

Parsing your document and applying the stylesheet transformation will be handled by one of three programs. The most likely
one is xsltproc, the parser that ships with Red Hat 7.3. The other possibilities are two Java programs, Saxon and Xalan,

http://www.xml.com/pub/rg/DTD_Repositories


4

It is relatively easy to generate high-quality XHTML from either DocBook; the fact that XHTML is simply another XML DTD
helps a lot. Translation to HTML is done by applying a rather simple stylesheet, and that’s the end of the story. RTF is also simple
to generate in this way, and from XHTML or RTF it’s easy to generate a flat ASCII text approximation in a pinch.

The awkward case is print. Generating high-quality printed output (which means, in practice, Adobe’s PDF (Portable Document
Format) is difficult. Doing it right requires algorithmically duplicating the delicate judgments of a human typesetter moving from
content to presentation level.

So, first, a stylesheet translates Docbook’s structural markup into another dialect of XML — FO (Formatting Objects). FO
markup is very much presentation-level; you can think of it as a sort of XML functional equivalent of troff. It has to be translated
to Postscript for packaging in a PDF.

In the toolchain shipped with Red Hat, this job is handled by a TeX macro package called PassiveTeX. It translates the formatting
objects generated byxsltproc into Donald Knuth’s TeX language. TeX was one of the earliest open-source projects, an old
but powerful presentation-level formatting language much beloved of mathematicians (to whom it provides particulaly elaborate
facilities for describing mathematical notation). TeX is also famously good at basic typesetting tasks like kerning, line filling, and
hyphenating. TeX’s output, in what’s called DVI (DeVice Independent) format, is then massaged into PDF.

If you think this bucket chain of XML to Tex macros to DVI to PDF sounds like an awkward kludge, you’re right. It clanks, it
wheezes, and it has ugly warts. Fonts are a significant problem, since XML and TeX and PDF have very different models of how
fonts work; also, handling internationalization and localization is a nightmare. About the only thing this code path has going for it
is that it works.

The elegant way will be FOP, a direct FO-to-Postscript translator being developed by the Apache project. With FOP, the
internationalization problem is, if not solved, at least well confined; XML tools handle Unicode all the way through to FOP. Glyph
to font mapping is also strictly FOP’s problem. The only trouble with this approach is that it doesn’t work — yet. As of August
2002 FOP is in an unfinished alpha state — usable, but with rough edges and missing features.

Here is what the FOP toolchain looks like:

FOP has competition. There is another project called xsl-fo-proc which aims to do the same things as FOP, but in C++ (and
therefore both faster than Java and not relying on the Java environment). As of August 2002 FOP is in an unfinished alpha state,
not as far along as FOP.

VII. W HO ARE THE PROJECTS AND THE PLAYERS?

The DocBook DTD itself is maintained by the DocBook Technical Committee, headed by Norman Walsh. Norm is the principal
author of the DocBook stylesheets, a man who has focused remarkable energy and talent over many years on the extremely complex
problems DocBook addresses. He is as universally respected in the DocBook/SGML/XML community as Linus Torvalds is in the
Linux world.

Thedocbook-toolsproject provides open-source tools for converting SGML DocBook to HTML, Postscript, and other formats.
This package is shipped with Red Hat and other Linux distributions. It is maintained by Mark Galassi.

Jadeis an engine used to apply DSSSL stylesheets to SGML documents. It is maintained by James Clark.
OpenJadeis a community project undertaken because the founders thought James Clark’s maintainance of Jade was spotty. The

docbook-tools programs use OpenJade.

http://sources.redhat.com/docbook-tools/
http://www.jclark.com/jade/
http://openjade.sourceforge.net/


5

libxslt is a C library that interprets XSLT, applying stylesheets to XML documents. It includes a wrapper program,xsltproc, that
can be used as an XML formatter. The code was written by Daniel Veillard under the auspices of the GNOME project, but does
not require any GNOME code to run. I hear it’s blazingly fast compared to the Java alternatives, not a surprising claim.

xmlto is the user interface of the XML toolchain that Red Hat ships. It’s written and maintained by Tim Waugh.
SaxonandXalanare Java programs that interpret XSLT. Saxon seems to be designed to work under Windows. Xalan is part of

the XML Apache project and native to Linux and BSD; it’s designed to work with FOP.
PassiveTeXthe package of LaTeX macros that xmlto uses for producing DVI from XML-DocBook.JadeTexis the package of

LaTeX macros that OpenJade uses for producing DVI from SGML-DocBook.
FOPtranslates XML Formatting Objects to PDF. It is part of the Apache XML project and is designed to work with Xalan.

VIII. M IGRATION TOOLS

The second biggest problem with DocBook is the effort needed to convert old-style presentation markup to DocBook markup.
Human beings can usually parse the presentatition of a document into logical structure automatically, because (for example) they
can tell from context when an italic font means ‘emphasis’ and when it meabs something else such as ‘this is a foreign phrase’.

Somehow, in converting documents to DocBook, those sorts of distinctions need to be made explicit. Sometimes they’re present
in the old markup; often they are not, and the missing structural information has to be either deduced by clever heuristics or added
by a human.

Here is a summary of the state of conversion tools from various other formats:
GNU Texinfo The Free Software Foundation has made a policy decision to support DocBook as an interchange format. Texinfo has
enough structure to make reasonably good automatic conversion possible, and the 4.x versions ofmakeinfo feature a--docbook
switch that generates DocBook. More at themakeinfo project page.
POD There is aPOD::DocBookmodule that translates Plain Old Documentation markup to DocBook. It claims to support every
DocBook tag except the L<> italic tag. The man page also says ”Nested =over/=back lists are not supported within DocBook.”
but notes that the module has been heavily tested.
LaTeX LaTeX is a (mostly) structural markup macro language built on top of the TeX formatter. There is a project calledTeX4ht
that (according to the author of PassiveTeX) can generate DocBook from LaTeX.
man pages and other troff-based markupsThis is generally considered the biggest and nastiest conversion problem. And indeed,
the basic troff(1) markup is at too low a presentation level for automatic conversion tools to do much of any good. However, the
gloom in the picture lightens significantly if we consider translation from sources of documents written in macro packages like
man(7). These have enough structural features for automatic translation to get some traction.
I wrote a tool to do this myself, because I couldn’t find anything else that did a half-decent job of it (and the problem is interesting).
It’s calleddoclifter. It will translate to either SGML or XML DocBook from man(7), mdoc(7), ms(7), or me(7) macros. See the
documentation for details.

IX. EDITING TOOLS

One thing we presently do not have is a good open-source structure editor for SGML/XML documents.
LyX is a GUI word processor that uses LaTeX for printing and supports structural editing of LaTeX markup. There is a LaTeX

package that generates DocBook, and ahow-to documentescribing how to write SGML and XML in the LyX GUI.
GeTox, the GNOME XML Editor, aims at nontechnical users. But the software is still (as of August 2001) alpha, more a proof of

concept than anything useful, and the project group seems not to be very active; there have been no updates of the website between
May 2001 and August 2002 (time of writing).

GNU TeXMacsis a project aimed at producing an editor that is good for technical and mathematical material, including displayed
formulas. 1.0 was released in April 2002. The developers plan XML support in the future, but it’s not there yet.

ThotBookis a project to put together a GUI editor for DocBook based on the Thot toolkit. It way be moribund; the web page
was not updated from November 2001 to August 2002 (time of writing).

Most people still hack the tags by hand using either vi or Emacs, using psgml to validate the results.

X. RELATED STANDARDS AND PRACTICES

The tools are coming together, if slowly, to edit and format DocBook markup. But DocBook itself is a means, not an end.
We’ll need other standards besides DocBook itself to accomplish the searchable-documentation-database objective I laid out at the
beginning of this document. There are two big issues: document cataloguing and metadata.

TheScrollkeeperproject aims directly to meet this need. It provides a simple set of script hooks that can be used by package
install and uninstall productions to register and unregister their documentation.

Scrollkeeper uses theOpen Metadata Format. This is a standard for indexing open-source documentation analogous to a library
card-catalog system. The idea is to support rich search facilities that use the card-catalog metadata as well as the source text of the
documentation itself.

http://xmlsoft.org/XSLT/
http://cyberelk.net/tim/xmlto/
http://users.iclway.co.uk/mhkay/saxon/
http://xml.apache.org/xalan-j/
http://users.ox.ac.uk/~rahtz/passivetex/
http://jadetex.sourceforge.net/
http://xml.apache.org/fop/
http://www.gnu.org/directory/texinfo.html
http://www.cpan.org/modules/by-module/Pod/
http://www.lrz-muenchen.de/services/software/sonstiges/tex4ht/mn.html
http://www.tuxedo.org/~esr/doclifter/
http://www.lyx.org/
http://bgu.chez.tiscali.fr/doc/db4lyx/
http://idx-getox.idealx.org/
http://www.math.u-psud.fr/~anh/TeXmacs/TeXmacs.html
http://www.freesoftware.fsf.org/thotbook/
http://scrollkeeper.sourceforge.net/
http://www.ibiblio.org/osrt/omf/


6

XI. SGML AND SGML-TOOLS

In previous sections, I have thrown away a lot of DocBook’s history. XML has an older brother, SGML or Standard Generalized
Markup Language.

Until mid-2002, no discussion of DocBook would have been complete without a long excursion into SGML, the differences
between SGML and XML, and detailed descriptions of the SGML DocBook toolchain. Life can be simpler now; a XML DocBook
toolchain is available in open source, works as well as the SGML toolchain ever did, and is easier to use, If you don’t think you’ll
ever have to deal with old SGML-Docbook documents, you can skip the remainder of this section.

A. DocBook SGML

DocBook was originally an SGML application, and there was an SGML-based DocBook toolchain that is now moribund. There
are minor differences between the DocBook SGML DTD and the DocBook XML DTD, but for an introductory discussion we can
ignore them. The only one that’s normally user-visible is that in SGML contentless tags did not need to have a trailing slash added
to them before the closing>. (Requiring the trailing / means XML parsers can be a lot simpler, because they don’t have to know
about the DTD to know which opening tags need closers.)

Versions of HTML up to 4.01 (before XHTML) were SGML applications. TEI was originally an SGML application, too. The
groups managing all three DTDs jumped to XML for the same reason DocBook’s developers did — it’s drastically simpler. SGML
was extremely complex; unmanageably so, as it turns out. The specification was a dense 150 pages and it is not reliably reported
that any software ever fully implemented it.

The toolchain diagram I gave earlier was simplified; it only showed the XML toolchain. Here is the historically correct version:

The DSSSL toolchain is what processed DocBook SGML. Under it, a document goes from DocBook format through one of
two closely-related stylesheet engines called Jade and OpenJade. These turn it into a TeX-macro markup. which is processed by a
package called JadeTeX, into DVIs, which then get turned into Postscript.



7

B. Why SGML DocBook is dead

The DSSSL toolchain is, as far as new development goes, effectively dead. The XSLT toolchain has just reached production
status as I write in August 2002; a working version shipped in Red Hat 7.3. It’s where DocBook developers are putting almost all
of their effort.

The reason for the change to XML was threefold. First, SGML turned out to be too complicated to use; then, DSSSL turned out
to be too complicated to live with; then, significant parts of the DSSSL toolchain turned out to be weak and irredeemably messy.

Relative to SGML, XML has a reduced feature set that is sufficient for almost all purposes but much easier to understand
and build parsers for. SGML-processing tools (such as validating parsers) have to carry around support for a lot of features that
DocBook and other text markup systems never actually used. Removing these features made XML simpler and XML-processing
tools faster.

The language used to describe SGML DTDs is sufficiently spiky and forbidding that composing SGML DTDs was something
of a black art. XML DTDs, on the other hand, can be described in a dialect of XML itself; there does not need to be a separate
DTD language. An XML description of an XML DTD is called aschema; the term DTD itself will probably pass out of use as the
standards for schemas firm up.

But mostly the DSSSL toolchain is dead because DSSSL itself, the SGML stylesheet description language in that toolchain,
proved just too arcane for most human beings, and made stylesheets too difficult to write and modify. (It was a dialect of Scheme.
Your humble editor, a LISP-head from way back, shakes his head in sad bemusement that this should drive people away.)

XML fans like to sum up all these changes with ”XML: tastes great, less filling.”

C. SGML-Tools

SGML-Tools was the name of a DTD used by theLinux Documentation Project, developed a few years ago when today’s
DocBook toolchains didn’t exist. SGML-Tools markup was simpler, but also much less flexible than DocBook. The original
SGML-Tools formatter/DTD/stylesheet(s) toolchain has been dead for some time now, but a successor calledSGML-tools Liteis
still maintained.

The LDP has been phasing out SGML-Tools in favor of DocBook, but it is still possible you might take over an old HOWTO.
These can be regognized by the identifying header ”<!doctype linuxdoc system>. If this happens to you, convert the thing to XML
DocBook and give the old version a quick burial.

XII. R EFERENCES

One of the things that makes learning DocBook difficult is that the sites related to it tend to overwhelm the newbie with long lists
of W3C standards, massive exercises in SGML theology, and dense thickets of abstract terminology. We’re going to try to avoid
that here by giving you just a few selected references to look at.

Michael Smith’sTake My Advice: Don’t Learn XMLsurveys the XML world from an angle similar to this document.
Norman Walsh’sDocBook: The Definitive Guideis availablein print andon the web. This is indeed the definitive reference, but

as an introduction or tutorial it’s a disaster. Instead, read this:
Writing Documentation Using DocBook: A Crash Course. This is an excellent tutorial.
There is an excellentDocBook FAQwith a lot of material on styling HTML output. There is also a DocBookwiki .
If you’re writing for the Linux Documentation Project, read theLDP Author Guide.
The best general introduction to SGML and XML that I’ve personally read all the way through is David Megginson’sStructuring

XML Documents(Prentice-Hall, ISBN: 0-13-642299-3).
For XML only, XML In A Nutshell by W. Scott Means and Elliotte ”Rusty” Harold is very good.
The XML Bible looks like a pretty comprehensive reference on XML and related standards (including Formatting Objects).
Finally, theThe XML Cover Pageswill take you into the jungle of XML standards if you really want to go there.

http://www.linuxdoc.org
http://sourceforge.net/projects/sgmltools-lite/
http://xml.oreilly.com/news/dontlearn_0701.html
http://www.oreilly.com/catalog/docbook/
http://www.docbook.org/tdg/en/html/docbook.html
http://www.bureau-cornavin.com/opensource/crash-course/index.html
http://www.dpawson.co.uk/docbook/
http://docbook.org/wiki/moin.cgi
http://www.linuxdoc.org/LDP/LDP-Author-Guide/index.html
http://vig.pearsoned.com/store/product/0,,store-562_banner-0_isbn-0136422993,00.html
http://vig.pearsoned.com/store/product/0,,store-562_banner-0_isbn-0136422993,00.html
http://www.oreilly.com/catalog/xmlnut2/
http://www.ibiblio.org/xml/books/bible/
http://xml.coverpages.org/

	I Introduction
	II Why care about DocBook at all?
	III Structural markup: a primer
	IV Document Type Definitions
	V Other DTDs
	VI The DocBook toolchain
	VII Who are the projects and the players?
	VIII Migration tools
	IX Editing tools
	X Related standards and practices
	XI SGML and SGML-Tools
	XI-A DocBook SGML
	XI-B Why SGML DocBook is dead
	XI-C SGML-Tools

	XII References

